首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23142篇
  免费   3521篇
  国内免费   2657篇
化学   17270篇
晶体学   304篇
力学   1278篇
综合类   202篇
数学   2483篇
物理学   7783篇
  2023年   392篇
  2022年   418篇
  2021年   680篇
  2020年   865篇
  2019年   834篇
  2018年   674篇
  2017年   644篇
  2016年   1048篇
  2015年   1008篇
  2014年   1250篇
  2013年   1683篇
  2012年   2085篇
  2011年   2182篇
  2010年   1524篇
  2009年   1329篇
  2008年   1556篇
  2007年   1333篇
  2006年   1311篇
  2005年   1178篇
  2004年   920篇
  2003年   779篇
  2002年   742篇
  2001年   578篇
  2000年   512篇
  1999年   470篇
  1998年   367篇
  1997年   332篇
  1996年   358篇
  1995年   330篇
  1994年   255篇
  1993年   234篇
  1992年   226篇
  1991年   192篇
  1990年   194篇
  1989年   151篇
  1988年   120篇
  1987年   85篇
  1986年   84篇
  1985年   81篇
  1984年   49篇
  1983年   44篇
  1982年   35篇
  1981年   29篇
  1980年   17篇
  1979年   27篇
  1978年   16篇
  1977年   14篇
  1976年   10篇
  1975年   14篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
51.
Device grade quantum dots (QDs) require QDs ensembles to retain their original superior optical properties as in solution. QDs with thick shells are proven effective in suppressing the inter-dot interaction and preserving the emission properties for QDs solids. However, lattice strain–induced defects may form as the shell grows thicker, resulting in a notable photoluminescence quenching. Herein, a well-type CdxZn1−xS/CdSe/CdyZn1−yS QDs is proposed, where ternary alloys CdZnS are adopted to match the lattice parameter of intermediate CdSe by separately adjusting the x and y parameters. The resultant thick-shell Cd0.5Zn0.5S/CdSe/Cd0.73Zn0.27S QDs reveal nonblinking properties with a high PL QY of 99% in solution and 87% in film. The optimized quantum dot light-emitting diodes (QLEDs) exhibit a luminance of 31547.5 cd m−2 at the external quantum efficiency maximum of 21.2% under a bias of 4.0 V. The shell thickness shows great impact on the degradation of the devices. The T50 lifetime of the QLEDs with 11.2 nm QDs reaches 251 493 h, which is much higher than that of 6.5 and 8.4 nm QDs counterparts. The performances of the well-type thick-shell QLEDs are comparable to state-of-the-art devices, suggesting that this type of QDs is a promising candidate for efficient optoelectronic devices.  相似文献   
52.
According to a corrected dispersion relation proposed in the study on the string theory and quantum gravity theory, the Rarita-Schwinger equation was precisely modified, which resulted in the Rarita-Schwinger-Hamilton-Jacobi equation. Using this equation, the characteristics of arbitrary spin fermion quantum tunneling radiation from non-stationary Kerr-de Sitter black holes were determined. A number of accurately corrected physical quantities, such as surface gravity, chemical potential, tunneling probability, and Hawking temperature, which describe the properties of black holes, were derived. This research has enriched the research methods and enabled increased precision in black hole physics research.  相似文献   
53.
54.
A novel type of supertetrahedral connectivity is exhibited by the 72‐atom discrete supercubooctahedron in (Cs6Cl)2Cs5[Ga15Ge9Se48] ( 1 ), which undergoes both cation and anion exchange, as revealed by unambiguous single‐crystal X‐ray diffraction data. Electronic‐structure studies helped to understand the Ge/Ga distribution.  相似文献   
55.
A new molecular dyad consisting of a Cy5 chromophore and ferrocene (Fc) and a triad consisting of Cy5, Fc, and β‐cyclodextrin (CD) are synthesized and their photophysical properties investigated at both the ensemble and single‐molecule levels. Hole transfer efficiency from Cy5 to Fc in the dyad is reduced upon addition of CD. This is due to an increase in the Cy5‐Fc separation (r) when the Fc is encapsulated in the macrocyclic host. On the other hand, the triad adopts either a Fc‐CD inclusion complex conformation in which hole transfer quenching of the Cy5 by Fc is minimal or a quasi‐static conformation with short r and rapid charge transfer. Single‐molecule fluorescence measurements reveal that r is lengthened when the triad molecules are deposited on a glass substrate. By combining intramolecular charge transfer and competitive supramolecular interaction, the triad acts as an efficient chemical sensor to detect different bioactive analytes such as amantadine hydrochloride and sodium lithocholate in aqueous solution and synthetic urine.  相似文献   
56.
Western blotting is a highly valued method for protein identification and relative quantitation in complex samples. It combines size-based electrophoretic separation with immunoaffinity to identify specific proteins. This technique remains popular and has become a workhorse in biochemical research and clinical laboratories. Despite its utility and popularity, this method has many limitations including slow analysis, incompatibility with limited sample application, low throughput and low information content. Recently there has been significant success in improving different aspects of Western blotting. In this review, we provide an overview of the developments in the area of improving conventional Western blotting methods with a focus on recent developments in microfluidic Western blotting. We overview different separation platforms, and discuss studies on protein transfer methods as well as protein immobilization methods and chemistries. We also describe integrated miniaturized platforms that can perform rapid separations and immunodetections.  相似文献   
57.
A heterometallic cluster [Ag6Au6(ethisterone)12] of an unprecedented topology was synthesized and characterized. A sensitive and specific probe for estrogen receptor α (ERα) has been developed for the first time based on the enhancement of the Ag6Au6 luminescence.  相似文献   
58.
59.
The intermolecular interaction determines the photophysical properties of the organic aggregates, which are critical to the performance of organic photovoltaics. Here, excitonic coupling, an important intermolecular interaction in organic aggregates, between the π-stacking graphene quantum dots is studied by using transient absorption spectroscopy. We find that the spectral evolution of the ground state bleach arises from the dynamic variation of the excitonic coupling in the excited π-stacks. According to the spectral simulations, we demonstrate that the kinetics of the vibronic peak can be exploited as a probe to measure the dynamics of excitonic coupling in the excited π-stacks.  相似文献   
60.
New multifunctional materials with both high structural and gas barrier performances are important for a range of applications. Herein we present a one‐step mechanochemical process to prepare molybdenum disulfide (MoS2) nanosheets with hydroxy functional groups that can simultaneously improve mechanical strength, thermal conductivity, and gas permittivity of a polymer composite. By homogeneously incorporating these functionalized MoS2 nanosheets at low loading of less than 1 vol %, a poly(vinyl alcohol) (PVA) polymer exhibits elongation at break of 154%, toughness of 82 MJ/m3, and in‐plane thermal conductivity of 2.31 W/m K. Furthermore, this composite exhibits significant gas barrier performance, reducing the permeability of helium by 95%. Under fire condition, the MoS2 nanosheets form thermally stable char, thus enhancing the material's resistance to fire. Hydrogen bonding has been identified as the main interaction mechanism between the nanofillers and the polymer matrix. The present results suggest that the PVA composite reinforced with 2D layered nanomaterial offers great potentials in packaging and fire retardant applications. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 406–414  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号